

Human-interpretable and deep features for privacy classification

Darya Baranouskaya

Andrea Cavallaro

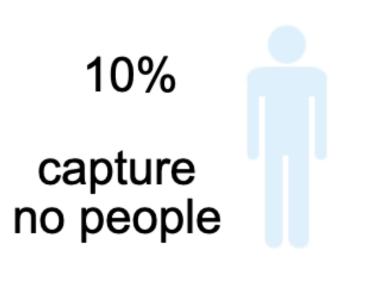
Centre for Intelligent Sensing, Queen Mary University of London, UK

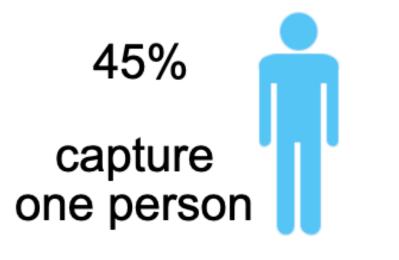
Goal

An interpretable and extensible method for privacy classification

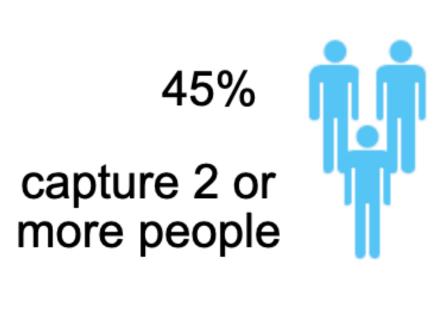
Contribution

- Analysis of privacy datasets and properties of controversially labelled images
- Propose eight privacy-specific and human-interpretable features for privacy classification (8PS)
 - o Improved performance over higher dimensional deep features
 - Improve the performance of deep features

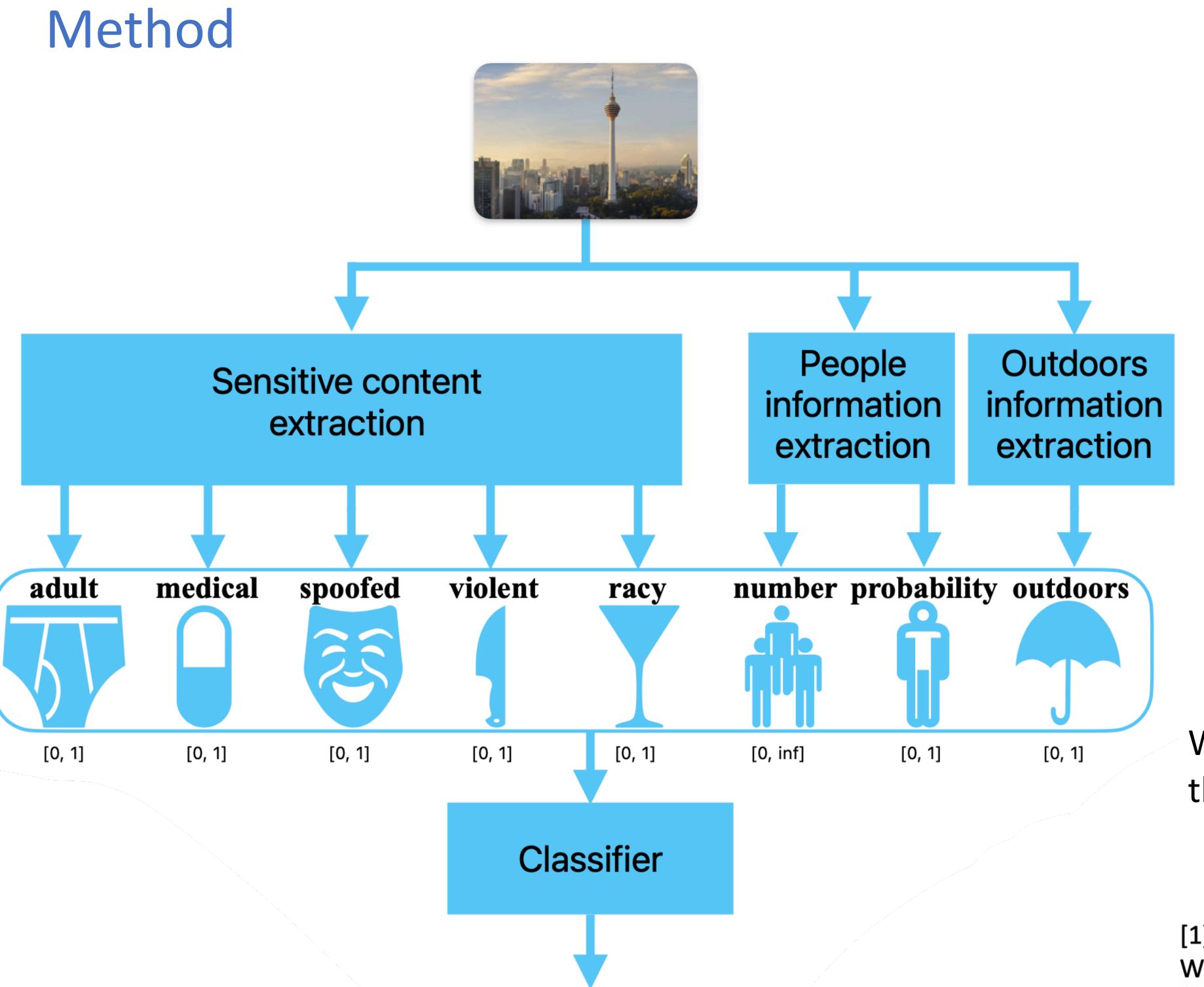

Dataset content



percentage of private images in the subset


Controversial images

No privacy label was chosen by more than 65% of annotators



Sensitive & Public

Results

LogReg on different subsets of features							
Sensitive	People	Outdoors	Places	Deep features	BA	F1	
√					80.04	66.46	
			\checkmark		73.01	56.41	
				ResNet18	78.99	63.97	
				ResNet50	81.37	66.99	
				ResNet101	81.51	67.46	
√	√				81.23	67.76	
	\checkmark	\checkmark			74.69	57.58	
	\checkmark		\checkmark		75.56	59.34	
√	√	√			80.96	66.54	
\checkmark	\checkmark		\checkmark		81.22	67.91	
	\checkmark	√	\checkmark		74.23	57.74	
√	√	√	√		80.83	67.21	
\checkmark	\checkmark	\checkmark		ResNet18	80.39	65.82	
\checkmark	\checkmark	\checkmark		ResNet50	81.93	67.71	
_	\checkmark	√		ResNet101	81.80	67.79	

BA - balanced accuracy, F1 - f1 score for private class

MLP on deep and 8PS features, F1 score

without 8PS	\oplus 8PS	
_	69.72	
70.64	71.07	
69.03	70.63	
70.00	70.47	
70.35	72.63	
69.67	71.79	
71.44	72.18	
	69.03 70.00 70.35 69.67	

Conclusion

We proposed a set of privacy-specific, human-interpretable features that achieves comparable performance to higher-dimensional features

References

[1] A.Tonge and C. Caragea, "Image Privacy Prediction Using Deep Neural Networks," ACM Trans. Web, vol. 14, no. 2, 2020.

[2] S. Zerr, S. Siersdorfer, J. Hare, and E. Demidova, "Privacy-aware image classification and search," 35th Int. ACM SIGIR Conf. Research and Development in Information Retrieval, 2012.

[3] C. Zhao, J. Mangat, S. Koujalgi, A. Squicciarini, and C. Caragea, "PrivacyAlert: A Dataset for Image Privacy Prediction," Proc. 16th Int. AAAI Conference on Web and Social Media, 2022.

Private / Public