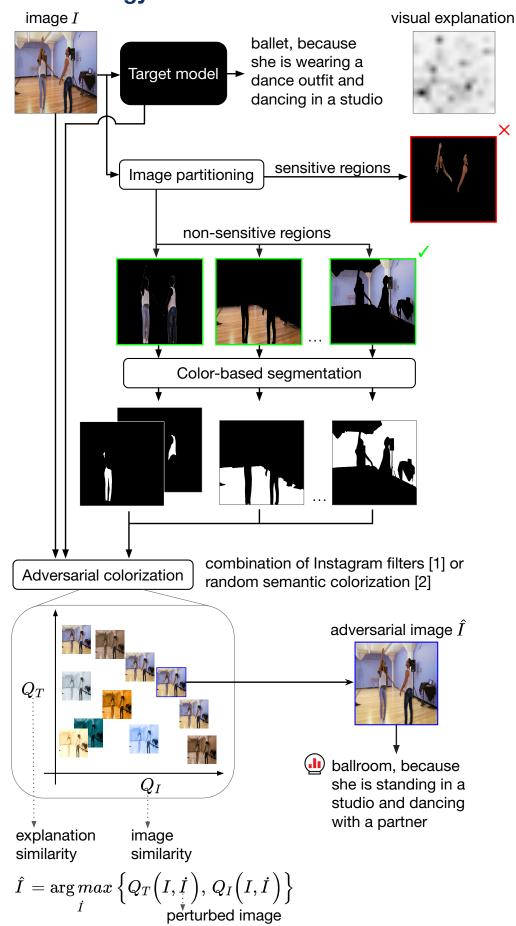


Black-box Attacks on Image Activity Prediction and its Natural Language Explanations


Alina Elena Baia¹, Valentina Poggioni², Andrea Cavallaro^{1,3,4}

¹Idiap Research Institute, ²University of Perugia, ³École Polytechnique Fédérale de Lausanne, ⁴Queen Mary University of London

Introduction

- adversarial attack: perturbs the input image to mislead a model
- black-box attack: uses only the final output of a model
- target model: a natural language explanation model (NL-XAI) that predicts a decision and generates both a textual and visual explanation
- scenarios:
 - change the prediction, keep the same textual explanation keep the same prediction, change the textual explanation
- perturbation: unrestricted region-specific, generated using semantic colorization and image editing filters

Methodology

Validation

Dataset: ACT-X [3] for activity recognition tasks Model: NLX-GPT [4] for prediction and explanation generation

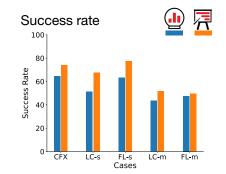

Performance evaluation: predictions for images I_i and \hat{I}_i Success rate for (11): $S_r = rac{1}{N} \sum_{j=1}^N \mathbb{1}_{\omega,} \ \mathbb{1}_{\omega} = egin{cases} 1, & ext{if } a_j
eq \hat{a}_j \wedge Q_T \Big(I_j, \hat{I}_j\Big) \geq t \ 0, & ext{otherwise} \end{cases}$ number of images similarity threshold

Image quality: MANIQA and Colorfulness

Cases:

CFX: an adaption of ColorFool [2] with Q_T FL-s (FL-m): full image filtering [1] with Q_T (and Q_T) LC-s (LC-m): localized image filtering with Q_T (and Q_I)

Results

Samples of adversarial images

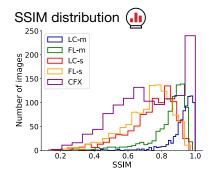
Original

ballroom, because he is wearing a suit and dancing with a woman in a dance studio MANIQA: 0.69 Colorfulness: 23.73

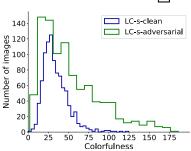
CFX

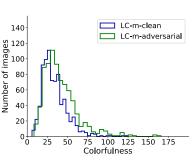
tai chi, because he is standing in a studio and dancing with a woman MANIQA: 0.64 Colorfulness: 147.56

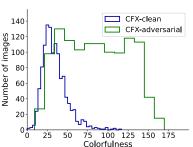
ballet, because he is wearing a dance robe and dancing with a woman MANIQA: 0.63 Colorfulness: 37.80


CFX

ballroom, because he is standing on a wood floor with a woman on his shoulders MANIQA: 0.70 Colorfulness: 37.90




LC-m


ballroom, because he is standing on a wood floor with a woman on his shoulders MANIQA: 0.72 Colorfulness: 33.58

Colorfulness distribution (11)

Takeaways

- NL-XAI are vulnerable to black-box attacks
- prediction-explanation association can be disrupted with simple photo editing techniques
- straightforward assessment of explanations' robustness

References

[1] Alina Elena Baia, Gabriele di Bari and Valentina Poggioni, Effective universal unrestricted adversarial attacks using a MOE approach, EvoApp 2021.

[2] Ali Shahin Shamsabadi, Ricardo Sanchez-Matilla and Andrea Cavallaro, ColorFool: Semantic adversarial colorization, CVPR 2020.

[3] Dong Huk Park, Lisa Anne Hendricks, Zeynep Akata and others, Multimodal explanations: Justifying decisions and pointing to the evidence, CVPR 2018.

[4] Fawaz Sammani, Tanmoy Mukherjee and Nikos Deligiannis, NLX-GPT: A model for natural language explanations in vision and vision-language tasks, CVPR 2022.

