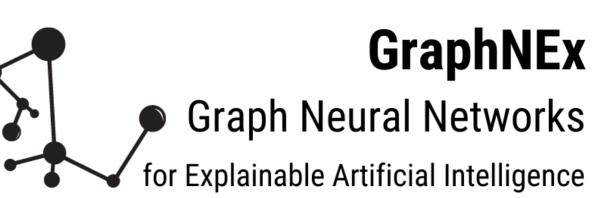
Studying Limits of Explainability by Integrated Gradients for Gene Expression Models

Myriam BONTONOU¹, Anaïs HAGET², Maria BOULOUGOURI², Jean-Michel ARBONA¹, Benjamin AUDIT³, Pierre BORGNAT³

¹Univ Lyon, ENSL, CNRS, LBMC, Lyon, France ²LTS2 laboratory, EPFL, Lausanne, Switzerland ³Univ Lyon, ENS de Lyon, CNRS, Laboratoire de physique, Lyon, France

- Supervised learning problems are formulated to decipher complex molecular processes driving cellular life.
- E.g. phenotype prediction from transcriptomic data (gene expression).
- Feature attribution explainability methods return the input features on which the individual predictions are predominantly based.
- These features are often interpreted as the cause of the phenotype.



EPA

ENS DE LYON

GitHub

Contributions

- Exploration of the relevance of the features identified by explainability.
- Definition of quantitative metrics.
- Simulation of data, with known discriminative features, mimicking genes.

PyTorch code https://github.com/mbonto/XAI_for_genomics.

Definition of quantitative metrics

Sample level [2]

How the prediction of a sample changes when features are set to zero?

• Network f, input x, modified input \tilde{x} .

Prediction gap PG = $\max(f(x) - f(\tilde{x}), 0)$

- Area under PG when an increasing number of features is set to zero with
- most important removed first \rightarrow **PG on Important features (PGI)**.
- less important removed first \rightarrow PG on Unimportant features (PGU).

Model level

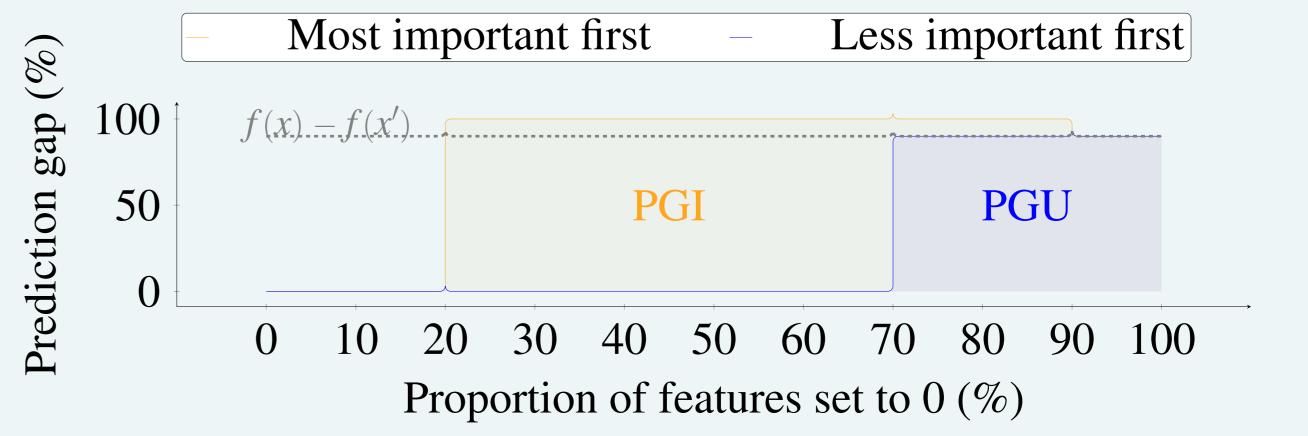


Figure 1 - Scheme describing the Prediction Gaps on Important features (PGI) and on Unimportant features (PGU).

 Table 1 - Explainability metrics averaged over test samples.

(a) Pan-Can TCGA

Network	LR	MLP	D + LR	D + MLP
Balanced accuracy (↑)	93.2%	94.7%	92.5%	94.3%
PGI (↑)	0.9570	0.9567	0.9750	0.9652

How the accuracy of a network changes when genes are set to zero?

- Accuracy obtained with the most important features for the whole dataset.
- Accuracy obtained with random features.

Do known discriminative features stand out among the identified features?

• Number of relevant features \mathcal{F} among the identified features \mathcal{M} .

Feature Attribution FA = $\frac{|\mathcal{F} \cap \mathcal{M}|}{-}$

Simulation of gene expression data

Generative probabilistic model called Latent Dirichlet Association [3].

 \rightarrow Known for document generation.

Individual samples (documents) are generated with a **fixed number** N of sequencing reads (words) associated with metabolic pathways (subjects). • Prior η_p proportion of genes expressed in pathway p.

- Prior α_c proportion of pathways expressed in class c.
- Proportion of reads appearing in a pathway $\beta_p \sim \text{Dirichlet}(\eta_p)$.

Generation of a sample s with N reads

Step 1 Draw the proportion of pathways $\theta_s \sim \text{Dirichlet}(\alpha_c)$. Step 2 For each read *i*,

PGU (↓) 0.0035 0.0197 0.0053 0.0133

(b) Simulations

Dataset	SIMU1		SIMU2	
Network	LR	MLP	LR	MLP
Accuracy (↑)			99.9%	
PGI (↑)	0.9905	0.9714	0.9881	0.9842
PGU (↓)	0.0007	0.0036	0.0007	0.0039
FA (↑)	0.72	0.76	0.43	0.45
$D + FA(\uparrow)$	1	1	0.96	1

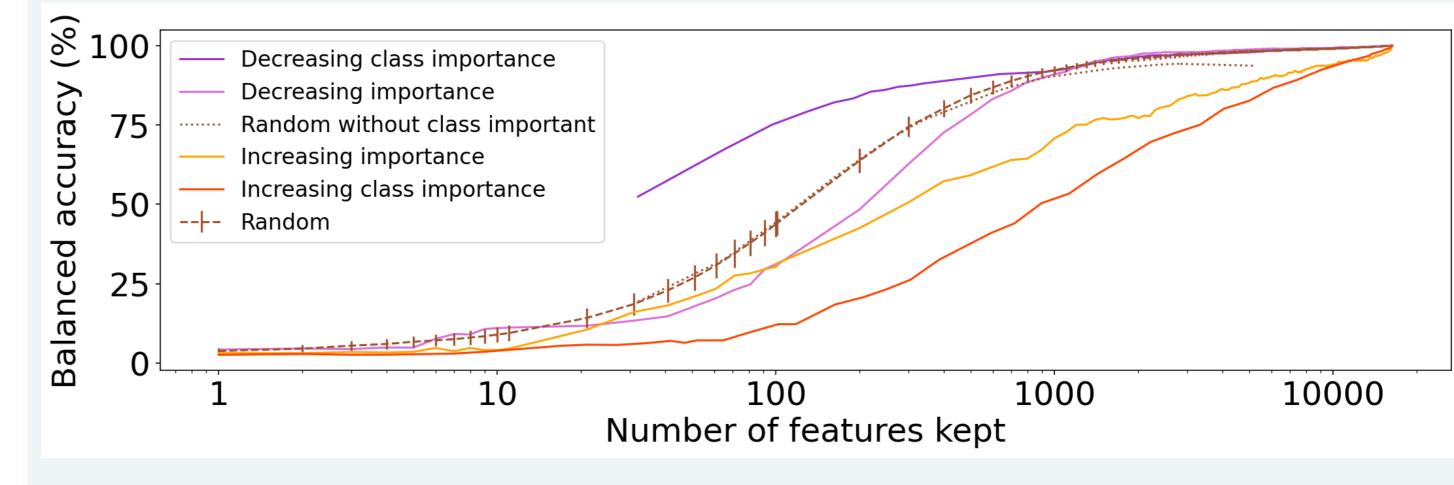


Figure 2 - Explainability metrics on Pan-Can TCGA data with LR.

- pathway assignment $p_i \sim \text{Multinomial}(\boldsymbol{\theta}_s)$, - drawn gene $g_i \sim \text{Multinomial}(\beta_p)$.

Experimental setting

- Simulated data (9900) or Gene expression from PanCan TCGA (9680).
- Classification problem 33 classes.
- Algorithm Logistic Regression (LR), Multilayer Perceptron (MLP), Diffusion layer on a correlation graph (D).
- Explainability method Integrated Gradients (IG).

PanCan TCGA [1] - 16335 genes. SIMU1/2 - 15000 genes. 1500 non-overlapping / 3000 overlapping pathways.

- Evaluation of the complexity of the real dataset PanCan TCGA. - Set of 50 genes sufficient to classify each sample (PGU). - But not necessary (PGI). • Analyse of the pertinence of the selected features on simulated data (FA).
- Well behaved explanatory features are ambiguous.

[1] https://portal.gdc.cancer.gov/.

[2] C. Agarwal, S. Krishna, E. Saxena, M. Pawelczyk, N. Johnson, I. Puri, M. Zitnik, and H. Lakkaraju. OpenXAI: Towards a transparent evaluation of model explanations. In NeurIPS Datasets and Benchmarks Track, 2022.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. *JMLR*, 2003.